Meyer's Relation

Deriving Meyer’s Relation ( Cp = Cv + R )
At Constant Volume

dQ = dU + dW ,

dQ= 1 x Cv x dT

dW=0                 



By I Law of Thermodynamics

 By Specific Heat Capacitance

 By Work Done

At Constant Pressure

dQ' = dU + dW     

dQ' =  1 x Cp x dT

dW=PdV=RdT     

dQ=    dU= Cv dT dQ' = Cp dT



Look Before You Leap:
Heat in terms of
1) First Law of Thermodynamics,  dQ = dU + dW
(Heat supplied converted to work and internal energy)

2) Molar Specific Heat Capacitance (Cp , Cv)  
dQ= m x C x dT

(Hint to derive Relate the Specific Heat capacitance with the first law of thermodynamics with Cp and Cv)
Drawing the diagram
Practical Applications:
Defining the Gas Constant.

Comments

Post a Comment